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An on-line recursive inverse method to estimate the input forces of beam structures is
presented. The inverse method is based on the Kalman filter and a recursive least-squares
algorithm. The filter models the system dynamics in a linear set of state equations. The state
equations of the beam structures were constructed using the finite element method. The
practicability and accuracy of the estimation method were examined with numerical
simulations from which the input forces of a cantilever beam with a lumped mass on the
free end were estimated from the output responses. In the numerical experiments, the
cantilever beam was subjected to five types of input forces, i.e., sinusoidal, triangular
impulse, rectangular impulse, a series of impulses and random. The simulation results show
that the inverse method has an excellent performance to estimate the input forces of beam
structural systems from the noisy measurements.

© 2002 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

The determination of excitation forces is a very important task in structure design.
However, direct measurements of the excitation forces are not always feasible, e.g.,
excitations of wind, seismic, explosion and shock. As a result, an indirect estimation for
the excitation forces is frequently employed. For the input forces estimation problems,
Stevens [1] has presented an overview of the force identification process for the case of
linear vibration systems. Hillary and Ewins [2] investigated the problems of sinusoidal
loads identification of a cantilever beam and determination of impact forces on aircraft
engine turbine blades with a least-squares method. Ory et al. [3] used the William’s method
[4] with a time integration scheme to identify the shock loading applied on a beam.
Bateman et al. [5] presented two force reconstruction techniques, i.e., the sum of weighted
acceleration and the deconvolution, to evaluate the impact test for a nuclear
transportation cask. Doyle [6-10] has developed many force estimation methods to
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identify the impact loads of composite beams and plates. Michaels and Pao [11] presented
a deconvolution method, which was applied to determine the orientation and time-
dependent amplitude of the input force from the transient response of a plate. Johnson [12]
presented the characteristic dynamical behavior of a linear system that was modelled by a
state variable model, involving input-derivative terms, and used the deconvolution
approach to identify the input forces/moments. More recently, Huang [13] used an
algorithm based on the conjugate gradient method to estimate the unknown external
forces in the inverse non-linear force vibration problems.

In the previous study [14], we have presented an inverse method to estimate impulsive
loads on lumped-mass structural systems. The inverse method is based on the Kalman
filter and a recursive least-squares method. The simulation results indicate that the method
can accurately estimate unknown impulsive loads. In addition, we have developed an
experimental apparatus and conducted a series of experiments on a physical cantilever
beam to identify the excitation forces [15]. The estimation results have demonstrated the
validity of the estimation method. However, the state-space model of the beam was
simplified to a single-degree-of-freedom lumped-mass system.

In the present work, the input forces estimation method [14] is applied in the beam
structural systems. We first used the finite element method (FEM) to construct the system
state equations of the beam structures, and then established an estimation scheme to
determine the unknown excitation forces. The practicability of the estimation method was
verified with numerical simulations of a cantilever beam. The cantilever beam with a
lumped mass mounted on the free end was subjected to five types of input forces, i.e.,
sinusoidal, triangular and rectangular impulses, a series of impulses and random. The
input forces were estimated from the simulated noisy responses through the input
estimation algorithm. The estimated input forces were compared with the exact input
forces to demonstrate the accuracy of the inverse method.

2. PROBLEM FORMULATION
2.1. STATE EQUATIONS OF THE SYSTEM

The Kalman filter, which comprises two parts (i.e., prediction and correction), is based
on the state-space analysis method. In the present study, we used the FEM to construct the
state-space model of beam structural systems. The finite element model of a beam
structure is considered to be an “n”’-degrees-of-freedom system. Therefore, the differential
equations of motion of the system in terms of mass, stiffness and damping matrices are

MY (7) + CY(t) + KY (1) = F(1), (1)

where M denotes the n x n mass matrix, C the » x n damping matrix, K the n x n stiffness
matrix, F(¢) the n x 1 input force vector, and ¥Y(¢), Y(¢) and Y(¢) denotes the 1 x 1 vectors
of acceleration, velocity and displacement respectively. The matrices M and K were
obtained from the FEM. The matrix C was obtained by assembling the matrices M and K
as a proportional damping model.

In converting to the state-space model, the state variables of the second order dynamic
system with »n degrees of freedom are represented by a 2n x 1 state vector, i.e., X(¢) =
[Y(1)Y(2)]". From equation (1), the continuous-time state equations and measurement
equations can be written as

X(r) = AX(r) + BF(1), (2)

Z(1) = HX(1), 3)
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where
A _ 0}’1><l’; IﬂXVll ’ B _ 0n><r11 ,
-M'K —-M'C M~
X(t):[Xl(t)Xz(t)...in,l(z)in(z)]T, F()=[F, F» Fs ... F,|', H=L,.,, is the

measurement matrix and Z(t) represents the observation vector.

Equations (2) and (3) are discretized over time intervals of length A¢, and associated
with process noise input [16], i.e., the statistical description of the system noise and
uncertainty in the dynamic models. Then, equation (2) becomes

X(k+ 1) =X(k) + I'[F(k) + w(k)],
X(k) = [X1(k) Xa(k) -+ Xou-1(k) Xau(K)]",

& =exp(A 41),
(k+1)4t
r :/ exp{A[(k + 1)4¢ — ]}B d,
k At
w(k) =[wi(k) wa(k) ... wu(Kk)]",
F(k) =[Fi(k) Fa(k) ... Fy(k)]", (4)

where X(k) represents the state vector, @ the state transition matrix, I" the input matrix, A¢

the sampling interval, F(k) the sequence of deterministic input and w(k) the noise vector

which is assumed to be zero mean and white with variance E{w(k)w” ()} = Qdy;, Q =

Ow X Iouxon, here Q is the process noise covariance matrix and dy; is the Kronecker delta.
In order to consider the measurement noise, Equation (3) is expressed as

Z(k) = HX (k) + v(k),
Z(k) = [Zi(k) Za(k) Z3(k) -+ Zau(K)]', (5)
v(k) = [v1(k) va(k) v3(k) - van(R)]",
where v(k) represents the measurement noise vector. Also, v(k) is assumed to be zero mean
and white noise. The variance of v(k) is given by E{v(k)v'(j)} = Royj, R = R, X Iyyyon

and R, = ¢°, here R is the measurement noise covariance matrix and ¢ represents the
standard deviation of measurement noise.

2.2. RECURSIVE INPUT ESTIMATION APPROACH

Input force estimation is a process of determining the applied loadings from the
measurements of the system responses. The present input estimation method consists of
two parts: the Kalman filter and an estimator. The Kalman filter is used to generate the
residual innovation sequence. The estimator then computes the onset time histories of the
excitation forces by utilizing the residual innovation sequence through a recursive least-
squares algorithm. The detailed derivation of this technique can be found in the appendix
of Tuan et al. [17].

The equations of the Kalman filter are

X(k/k—1) = dX(k — 1/k — 1) (6)
P(k/k—1)= Pk —1/k —1)®T + I'QIT, (7)

S(k) = HP(k/k — 1)HT 4+ R, (8)
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K, (k) = P(k/k — DH'S ! (k), 9)
P(k/k) = [I - K,(k)H]P(k/k — 1), (10)
Z(k) = Z(k) — HX (k/k — 1), (11)
X(k/k) = X(k/k — 1) + K, (k)Z(K). (12)
The equations of the recursive least-squares algorithm are
B, (k) = H[®M,(k — 1) + I|T, (13)
M; (k) = [I-K,(k)H][®@M(k — 1) + 1], (14)
Kp(k) = 77" Py(k — DB (k) [By(k)y~ ' Py(k — DB (k) +S(k)] ™, (15)
Py(k) = [1— K (k)By(k)]y™ ' Py(k — 1), (16)
F(k) = F(k — 1) + Ky (k)[Z(k) — By(k)E(k — 1)], (17)

where P denotes the filter’s error covariance matrix, S(k) represents the innovation
covariance, K, (k) is the Kalman gain, By(k) and M(k) are the sensitivity matrices, Z(k) is
the innovation, K,(k) is the correction gain for the updating l:“(k) and P, represents the
error covariance of the estimated input vector F(k) The scalar parameter y, i.e., fading
factors, is employed in the present algorithm to compromise between the fast adaptive
capability and the loss of estimate accuracy.

The procedure to estimate the unknown input forces using the inverse method is
summarized as follows:

(1) Derive and identify the system state-space model, i.e., equations (4) and (5), and
measure the system responses X(k).

(2) Use the Kalman filter equations, i.c., equations (6)—(12), to obtain the innovation
covariance S(k), innovation Z(k) and Kalman gain K, (k).

(3) Use the recursive least-squares algorithm, i.e., equations (13)—(17), to estimate the
unknown input forces F(k).

3. NUMERICAL SIMULATIONS AND RESULTS

To illustrate the practicability and accuracy of the present approach in estimating
unknown input forces, numerical experiments of a cantilever beam [15] are investigated
here. The finite element model of the cantilever beam with a lumped mass on the free end is
shown in Figure 1. The material data and dimensions of the beam and lumped mass are
given in Table 1. The element mass matrix M and element stiffness matrix K¢ of the beam
are as follows [18]:

156 220 54 —13¢
.l 42 130 -3
420 156 —22¢

SYM 42

Mé’




INPUT FORCES ESTIMATION BY INVERSE METHOD 391

\NNNNN

1 o2 ©°3 o4 oS o6 o7 8 o9 °10 11

ANNNN

Figure 1. Finite element model of the cantilever beam with a lumped mass mounted on the free end (10
elements with 11 nodes).

TABLE 1

The Material data and dimensions of the cantilever beam and lumped mass

Beam Lumped mass
Material Aluminum alloy Brass
Density (kg/m®) 2710 8400
Elastic modulus (Gpa) 70 100
The Poisson ratio 0-33 0-34
Length (m) 0-264 0-020
Width (m) 0-030 0-030
Height (m) 0-005 0-040

and

12 6 —12  6f

ke - ELs 42 —et 27
A 12 —60|’
SYM 407

where p; is the mass per unit length of the beam, ¢ the length of the beam element, E the
elastic modulus and /; the moment of inertia of the cross-section. The global matrices M
and K of the beam were obtained by assembling the matrices M° and K°. The proportional
damping matrix C was expressed as below:

C =oM + K,

where o and f are constants with proper units. A comparison of the FEM and
experimentally estimated natural frequencies for the first three modes of the cantilever
beam is shown in Table 2.

Five types of input forces were considered in the numerical experiments, i.e., sinusoidal,
triangular impulse, rectangular impulse, a series of impulses and random. The simulated
measurements of the cantilever beam were loaded into the inverse estimation algorithm,
i.e., equations (7)—(17), to identify the corresponding input forces.
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TABLE 2

Comparison of FEM and experimental results of the natural frequencies

Mode FEM (Hz) Experiment [15] (Hz)
1 17-92 17-45
2 223-88 21534
3 558-54 560-74

3.1. ESTIMATION OF TWO SINUSOIDAL FORCES

In the first numerical experiment, two sinusoidal forces were introduced as below:
Fio(#) =2 x sin (1807z) + 1 x sin (90xt) (N),
F;(t) =1 x sin (180x¢) (N).

The two sinusoidal forces acted on nodes 10 and 7 of the beam. The dynamic responses of
the beam were solved by using a numerical method. The parameters used in the numerical
experiment are given as follows: null initial conditions, sampling interval Az = 1 x 107*s,
fading factor y = 0.69, covariance matrix of process noise Q = Q,, X Lz, O, =1 x 1077,
covariance matrix of measurement noise R = R, X Ip,2,, R, =1 x 1071°. The input
forces estimation was first performed by using the errorless measurement data (see
Table 3). Figure 2 shows the displacements at nodes 10, 8 and 7 of the cantilever beam.
The exact and estimated input forces are shown in Figure 3. The figure also illustrates the
estimation result of node 8 where no input force was applied. The estimation results have
demonstrated the validity of the present inverse estimation algorithm. Next, the influence
of the process and measurement noises on the estimation results was considered. The
displacements with assuming process and measurement noises of the cantilever beam are
depicted in Figure 4 (solid line indicates the exact displacement, dotted line the
contaminated displacement). The estimation results of the two sinusoidal forces are
shown in Figure 5. The error used to quantify the deviations between the estimated and
exact input forces was defined as below [19]:

¢z Jfern) —fes ()
:[f”‘(ti)]z

where f“*(1;) and f*(¢;) designate the exact and estimated forces at time #; respectively.
Because large process and measurement noise covariances are considered, the errors of
the two estimated sinusoidal forces are relatively high (17-57 and 9-:29%). However, the

Error (% x 100,

TABLE 3

Errors of the estimated input forces at different levels of Q,, and R,

0,=1x10"° R, =1x10"1 0,=1x10"1" R, =1x1071
Two sinusoidal forces 17-57% and 9-29% 7-38% and 3-08%
Triangular impulse 16-83% 8:58%
Rectangular impulse 14-80% 9-89%
A series of impulses 32-51% 20-42%

Random force — -
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Figure 2. Time histories of the displacements at nodes 10, 8 and 7.

present inverse method still has the tracking capability to identify the two sinusoidal
forces. To obtain better estimation results, we adjusted the values of Q,, = 1 x 107'° and
R,=1x107'%. Figures 6 and 7 depict the corresponding time histories of the
displacements and estimation results. The results reveal a very good estimating ability,
and the errors of the two estimated sinusoidal forces reduce obviously (7-38 and 3-08%).

3.2. ESTIMATION OF A TRIANGULAR IMPULSE

In the second test case, a triangular impulse that acted on node 10 was expressed as
Fio(t) = 4t/(5 x 1073)(N), 0<t<0-005 (s),

Fio(1) = 4001 — 1)/(5 x 1073) (N),  0-005<<0-010 (s),

Fio(r) =0(N), > 0010 (s).

The simulation parameters are given by null initial conditions, Az = 1 x 107*s, 7 = 0.52,
0,=1x10" R,=1x10"". Figures 8 and 9 depict the time histories of the
displacement and estimation result of the triangular impulse (see also Figure 10). The
error of the estimated triangular impulse is 16.83%. With reference to Figure 11, we
learned that the selection of small values of process and measurement noise covariances,
ie, Q,=1x10""" and R, =1 x 107'%, can provide a better estimation result of the
triangular impulse. The error of the estimation result reduces to 8.58%.
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Figure 3. Time histories of the sinusoidal forces at nodes 10, 8 and 7: (—) exact; (- - -) estimated; y = 0-69,
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Figure 4. Time histories of the displacements at nodes 10, 8 and 7: (—) exact; (- - -) contaminative; Q,, =
1x107% R, =1x10"1.
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Figure 5. Time histories of the sinusoidal forces at nodes 10, 8 and 7: (—) exact; (- - -) estimated; y = 0-69,
0,=1x10"7 R, =1x107",
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Figure 6. Time histories of the displacements at nodes 10, 8 and 7. (—) exact; (- - -) contaminative; Q,, =
1x10719 R, =1x 10719,
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Figure 7. Time histories of the sinusoidal forces at nodes 10, 8 and 7: (—) exact; (- - -) estimated; y = 0-69,
0,=1x10"1 R, =1x 107"
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Figure 8. Time history of the displacement at node 10: (—) exact; (- - -) contaminative; Q,, = 1 x 1079,
R, =1x10"1,
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Error= 16.829 %
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Figure 9. Time history of the triangular impulse at node 10: (—) exact; (- - -) estimated; y = 0-52, Q,, =
1x107%, R, =1x 1071,
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Figure 10. Time history of the displacement at node 10: (—) exact; (- - -) contaminative; Q,, = 1 x 1071°,
R,=1x10719,
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Error= 8.5825 %
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Figure 11. Time history of the triangular impulse at node 10: (—) exact; (- - -) estimated; y = 0-52, Q,, =
1x 10710 R, =1x 107,
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Figure 12. Time history of the displacement at node 10: (—) exact; (- - -) contaminative; Q,, = 1 x 1072,
R, =1x10"1,
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3.3. ESTIMATION OF A RECTANGULAR IMPULSE
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In the third demonstration, a rectangular impulse that acted on node 10 was assumed as

Fio(r) =0 (N), 0<<0-005(s),
Fio(r) =4 (N), 0:005<<0:015s),
Fio(t) =0(N), ¢>0015(s).

The simulation parameters are the same as the previous test case. Figures 13 and 15
present the estimation results of the rectangular impulse at different levels of Q,, and R,.
From these figures, we can conclude that the present inverse method has an excellent

tracking ability to identify input forces with abrupt changes.

3.4. ESTIMATION OF A SERIES OF IMPULSES

To examine the present inverse method in predicting complex input forces, a series of
impulses that acted on node 10 was considered. The pattern of the series of impulses was

expressed as

F]()(l) =0 (N), 0<1<0-002 (S),

Fio(t) = 3(t—0:002) /(3 x 1073) (N), 0-002 < ¢<0-005 (s),

Error= 14.7966 %

Force [N]

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Time [s]

0.09

0.1

Figure 13. Time history of the rectangular impulse at node 10: (—) exact; (- - -) estimated; y = 0-58, Q,, =

1x107% R, =1x10715,
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Figure 14. Time history of the displacement at node 10: (—) exact; (- - -) contaminative; Q,, = 1 x 1071°,
R, =1x1071°,
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Figure 15. Time history of the rectangular impulse at node 10: (—) exact; (- - -) estimated; y = 0-58, Q,, =
1x1071° R, =1 x 10719,
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Figure 16. Time history of the displacement at node 10: (—) exact; (- - -) contaminative; Q,, = 1 x 1072,
R, =1x10"1,

Fio(t) =0 (N), 0-005<7<0-008 (s),
Fio(f) = 4 (N), 0008 <7<0-012 (s)
Fio(f) = 0(N), 0012<7<0015(s),
Fio(t) = 3 x sin(n£/9-52575) (N), 0015 <7<0.030 (s),
Fio(t) = 0(N), 0030<7<0033 (s),
Fio(t) = 4(0:038 — 1)/(5 x 107%) (N),  0-033<7<0.038 (s),

Fio(r) =0 (N), 7> 0-038(s).

The estimation results of the mixed impulses are presented in Figures 17 and 19. These
results indicate that the estimation technique has superior performance in tracking
complex unknown input forces.

3.5. ESTIMATION OF A RANDOM FORCE

Finally, we considered the estimation of a random force that acted on node 10. In the
numerical experiment, the random force was generated by a signal generator as below:
Fio(t) = 20 x random signal (N).

The estimation result in Figure 21 reveals that the present inverse method provides a
reliable tracking capability for the random force. Thus, we can conclude that the present



402 C.-K. MA ET AL.

Error=24.8073 %
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Figure 17. Time history of the series of impulses at node 10: (—) exact; (- - -) estimated; y = 0-46, Q,, =
1x107° R, =1x1071.
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Figure 18. Time history of the displacement at node 10: (—) exact; (- - -) contaminative; Q,, = 1 x 10710,
R,=1x1071°,



Force [N]
o

INPUT FORCES ESTIMATION BY INVERSE METHOD 403
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Figure 19. Time history of the series of impulses at node 10: (—) exact; (- - -) estimated; y = 046, Q,, =
1x 10710 R, =1x 1076

estimation algorithm can be applied to beam structural systems in predicting unknown
input forces in the real world.

()

2

4. DISCUSSIONS

The Kalman filter is a recursive data-processing algorithm, such that all previous
data, except the most recent, need not be kept in storage at the time where a new
measurement is taken. Therefore, the present inverse method processes the
measurements in an on-line form. On-line means that the unknown input forces at
any time step can be estimated recursively from measurements taken at the same time
step. In addition, the present scheme, with its recursive structure, can save a lot of
memory and reduce the computational loads of computers.

From the figures of the estimation results, we have found that there exists a time delay
between the exact and the estimated input forces. It is well known that the cross-
correlation function gives a measure of how much two signals in the time domain are
“alike” with a certain delay between them [20]. From the evaluation of the cross-
correlation function between the exact and the estimated input forces, a three-time-
step delay was found. Therefore, before evaluating the errors of the estimation results,
we have made time delay shifting treatments in time histories of the estimated input
forces.
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Figure 20. Time history of the displacement at node 10: (—) exact; (- - -) contaminative; Q,, = 1 x 10,
R,=1x1071.
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Figure 21. Time history of the random force at node 10: (—) exact; (- - -) estimated; y = 0-16, Q,, = 1 x 1072,
R,=1x10"1,
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(3) Since P = P x I,x2, and Py, = Py x I, are normally not known, the estimator is
initialized with P and Py as large numbers, such as 10° and 107 respectively. This has
the effect of treating the errors in the initial estimation of the input forces as large.
However, after a few time steps, the estimation results converge to their actual values
rapidly. This shows that the present technique has the capability to correct the errors
in the initial estimation.

(4) The estimation results of the input forces with high levels of Q,, and R, have large
fluctuations, as shown in Figures 5, 9, 13 and 17. The errors of the estimated input
forces at different levels of Q,, and R, are presented in Table 3. As these figures and
table reveal, large process and measurement noises can cause degradation of
estimation accuracy. However, the present inverse method can still track the
unknown input forces where the large process and measurement noises are considered
(Table 3).

(5) The estimation results of the two sinusoidal forces indicate that the present estimation
algorithm is capable of dealing beam structural systems with multiple inputs and
multiple outputs (MIMO).

5. CONCLUSIONS

This work has presented an on-line recursive inverse method to estimate the unknown
input forces of beam structural systems. We used the FEM to construct the state equations
of beam structures. The state-space analysis of the system is performed to employ the
present input estimation algorithm. The feasibility of the present method was examined
with the numerical experiments of a cantilever beam. The estimation results of all test cases
show that the present approach can accurately estimate the periodic, impulsive and
random excitation forces of beam structural systems. Results also indicate that the present
technique is capable of handling noisy measurements. We have demonstrated the
effectiveness of the present method in estimating input forces with time-varying and
discontinuity. The random force estimation is useful to identify the excitation loads of
beam structures frequently occurring in realistic environments. Future works of this study
would address the problems of input forces estimations of two- and three-dimensional
structural systems, and the applications in vibration control.
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APPENDIX A: NOMENCLATURE

constant matrix

constant matrix

sensitivity matrices

damping matrix

elastic modulus

impulsive load vector (the unknown inputs to be estimated)
measurement matrix

moment of inertia

identity matrix

time (discretized)

stiffness matrix

Kalman gain

correction gain

length of the beam element

mass matrix

sensitivity matrices

filter’s error covariance matrix
error covariance matrix

process noise covariance matrix
scalar of process noise covariance
measurement noise covariance matrix
measurement noise covariance
innovation covariance

time (continuous)

final time

measurement noise vector
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W process noise vector

X state vector

Y displacement vector

Y velocity vector

Y acceleration vector

Z observation vector

Y fading factor

T input matrix

0 Kronecker delta

At sampling time (interval)
Ps mass per unit length of the beam
G standard deviation

() state transition matrix
Superscripts

B estimated

— estimated by filter

T transpose of matrix
Subscripts

i,j indices
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